Biochemical activity of reactive oxygen species scavengers do not predict retinal ganglion cell survival.

نویسندگان

  • Christopher R Schlieve
  • Christopher J Lieven
  • Leonard A Levin
چکیده

PURPOSE Retinal ganglion cells (RGCs) die as a result of axonal injury in a variety of optic neuropathies, including glaucoma. Reactive oxygen species (ROS) act as intracellular signaling molecules and initiate apoptosis in nerve growth factor-deprived sympathetic neurons and axotomized RGCs. Determination of the role of specific ROS relies on the use of small molecule or protein scavengers with various degrees of specificity. The pro- or anti-cell-death effect of several ROS generating and scavenging systems in cultured RGCs was correlated with their activity in cell-free assays. METHODS Neonatal rat retinas were dissociated and incubated with ROS-generating systems for hydroxyl radical, superoxide anion (O2-), and H2O2. Scavengers tested were catalase, polyethylene glycol-superoxide dismutase (PEG-SOD), manganese (III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), deferoxamine, and U-74389G. Viability of retrogradely labeled RGCs was determined with calcein-AM 24 hours after plating. O2- and H2O2 scavenging in cell-free assays was measured with dihydroethidium and Amplex Red (Invitrogen, Carlsbad, CA), respectively. RESULTS Systematic differences were found between ROS scavenging in cell-free assays and the ability of scavengers to protect RGCs in cell culture. Furthermore, many ROS scavengers lost specificity and protected against various ROS, whereas others failed to protect against their unique ROS target. These activities stray from commonly recognized specificities of individual ROS scavengers or generating systems and are important in understanding ROS biology. In addition, antioxidant defense mechanisms used by RGCs and other retinal cells interfere with responses expected from ROS scavengers in well-defined systems. Last, H2O2 induced intramitochondrial O2-, whereas paraquat produced O2- outside of the mitochondria, and these areas of generation can mislead interpretations of ROS scavenger activity and effectiveness. CONCLUSIONS There is discordance between ROS effects in cultured RGCs and cell-free assays, with several mechanisms accounting for this divergence. To identify the roles of ROS signaling in cell death accurately, several approaches should be used. These include using a panel of ROS scavengers and generators, testing the panel in primary neuronal cultures, and quantifying ROS with cell-free assays.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterns of distribution of oxygen-binding globins, neuroglobin and cytoglobin in human retina.

OBJECTIVE To determine the distribution of 2 intracellular oxygen-carrying molecules, neuroglobin (NGB) and cytoglobin (CYGB), in specific retinal cell types of human retinas. METHODS Specific antibodies against NGB and CYGB were used in immunohistochemical studies to examine their distribution patterns in human retinal sections. Double-labeling studies were performed with the anti-NGB and an...

متن کامل

Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone)

Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGC...

متن کامل

Differential susceptibility of retinal ganglion cells to reactive oxygen species.

PURPOSE Retinal light exposure is a source of oxidative stress, and retinal cells contain molecules that scavenge or inactivate reactive oxygen species (ROS). Yet, ROS also play a role in signal transduction, and some retinal cells (e.g., neurotrophin-dependent retinal ganglion cells, RGCs) may use ROS as part of the signaling process for cell death. RGCs might therefore have specialized mechan...

متن کامل

Edaravone Protect against Retinal Damage in Streptozotocin-Induced Diabetic Mice

Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a ...

متن کامل

Edaravone Prevents Retinal Degeneration in Adult Mice Following Optic Nerve Injury.

Purpose To assess the therapeutic potential of edaravone, a free radical scavenger that is used for the treatment of acute brain infarction and amyotrophic lateral sclerosis, in a mouse model of optic nerve injury (ONI). Methods Two microliters of edaravone (7.2 mM) or vehicle were injected intraocularly 3 minutes after ONI. Optical coherence tomography, retrograde labeling of retinal ganglio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 47 9  شماره 

صفحات  -

تاریخ انتشار 2006